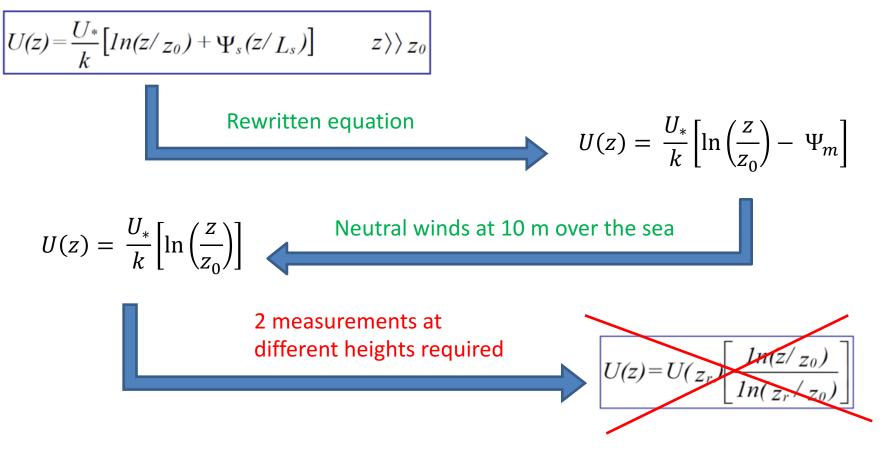


COMPARISON OF DIFFERENT METHODOLOGIES IN VERTICAL WIND EXTRAPOLATION FOR SATELLITE RETRIEVALS

Alberto Rabaneda Matthew Stickland University of Strathclyde Mechanical and Aerospace Engineering Department

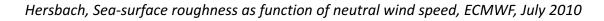
Outline


- 1. Introduction
- 2. U* methodologies
- 3. Z₀ methodologies
- 4. Z_0 regimes
- 5. Locations
- 6. Data computation
- 7. Results
- 8. Conclusions

Introduction

Hub height wind resource estimation

Wu method


 $C_{10} = [0.8 + 0.065 \times U_{10} \times 10^{-3}]$

$$C_{10} = \frac{{u_*}^2}{{U_{10}}^2}$$

- > U10 dependant
- Best fit U<15 m/s</p>

C₁₀ = drag coefficent at 10 m
U₁₀ = wind speed at 10 m
u* = friction velocity

Wu, Wind-Stress Coefficients Over Sea Surface From Breeze to Hurricane, J. of geophysical research, November 1982.

7

ECMWF method

$$C_{10n} = \left(\frac{k}{b_{fit}}\right)^2$$

$$b_{fit} = [(b_v)^p + (b_\alpha)^p]^{1/p}$$

$$A = \frac{\alpha_{Ch}}{g \times z} \times (k \times U_{10})^2$$

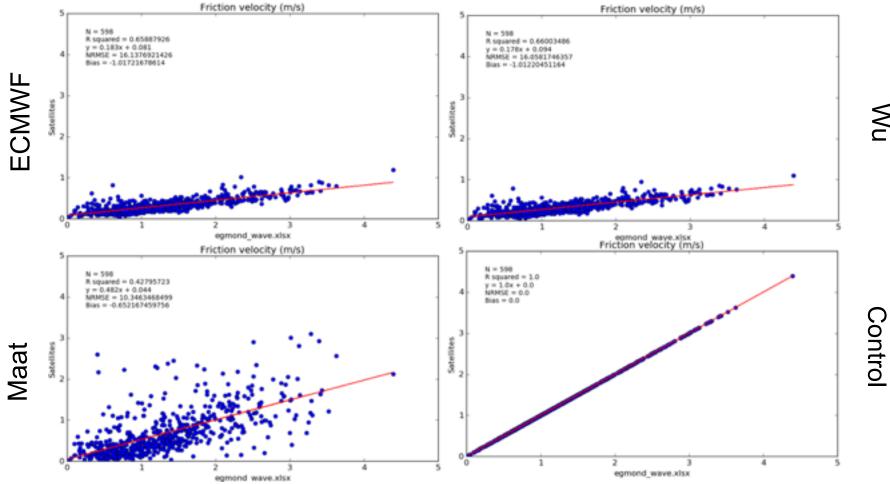
v = Kinematic viscosity of air α_{ch} = Charnock parameter **α**_M = 0.11 **z** = height

- Charnock parameter, kinematic viscosity & U₁₀ dependant.
- It can be used for different heights and wind speeds.

$$b_{\alpha} = 2.65 - 144 \times \log A - 0.0015 \times (\log A)^2$$

$$b_{v} = -1.47 + 0.93 \log_{10} \left[\frac{z \times k \times U_{10}}{v \times \alpha_{M}} \right]$$

Maat method


$$H_* = B \times \left(c_p / u_* \right)^{3/2}$$

$$H_* = \frac{g \times H_S}{(u_*)^2}$$

$$u_* = \frac{g^2 \times (H_S)^2}{B^2 \times (c_p)^3}$$

- Wave age and wave height dependant.
- It is supposed to hold for growing pure wind waves.
- H* = Dimensionless wave height
- C_P = phase speed at the peak frequency
- **B** = empirical coefficient
- **g** = gravitational acceleration
- H_s = Significant wave height

₹u

Z₀ methodologies

Iteration

$$U(z) = \frac{U_*}{k} \left[\ln \left(\frac{z}{z_0} \right) \right]$$
$$z_0 = \alpha_c \frac{U_*^2}{g}$$

g α_c U(10)

= gravity = Charnock's parameter (0.0144)

) = satellite neutral wind speed

- 1. Calculate U^* and z_0 at 10 m
- 2. Calculate U when z is the hub height

Z₀ methodologies

Fetch, Fetch_min & DTU_age methods

$$\alpha = 1.89 \left(\frac{u_*}{c_p}\right)^{1.59} \left[1 + 47.165 \left(\frac{u_*}{c_p}\right)^{2.59} + 11.791 \left(\frac{u_*}{c_p}\right)^{4.59}\right]^{-1}$$

$$u_* = \frac{u_*}{c_p} = \frac{3.5}{2\pi} \times \left(\frac{(U_{10})^2}{x \times g}\right)^{1/3}$$

- For fully develop, wind generated waves over deep seas
- 10m neutral wind speed and fetch dependant

x = fetch

DTU_age is only dependent of wave age

Z₀ methodologies

Log law

$$C_{10} = \frac{u_{*}^{2}}{U_{10}^{2}} = \left[\frac{k}{\ln(z/z_{0}) - \Psi_{m}}\right]^{2}$$

Under neutral conditions this method is friction velocity and 10m neutral wind speed dependant Smith & Toba

$$\alpha = 0.48 \big(u_* / c_p \big)$$

- $\alpha = 0.025 \big(u_* / c_p \big)$
- Empirical equations
- Wave age dependant

Edson et al., On the exchange of momentum over the open ocean, American Meteorological Society, August 2013.

\blacktriangleright For wave age > 33

D = Empirical coefficient **L** = Wave length

Sea state

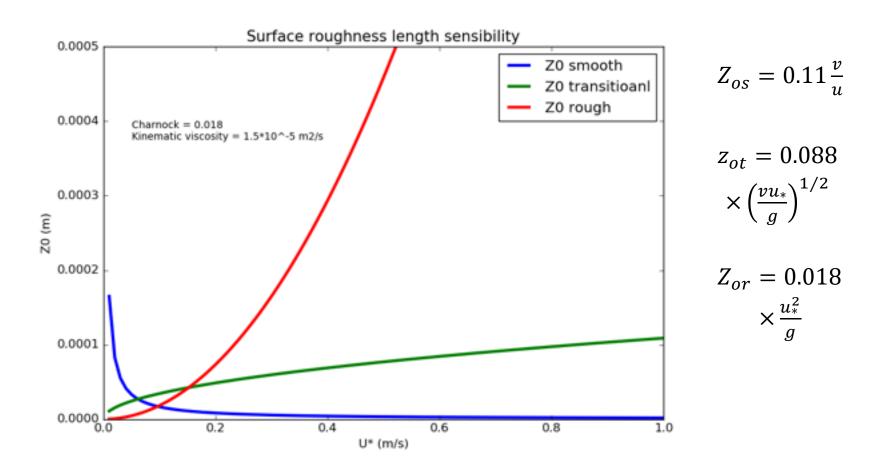
$$\alpha = mU_{10} + b$$

 $\alpha = A \left(\frac{u_*}{c_p}\right)^B$

Speed & Age

$$z_{0 rough} = \frac{D \times H_S \times 2\pi \times (u_*)^2}{g \times L}$$

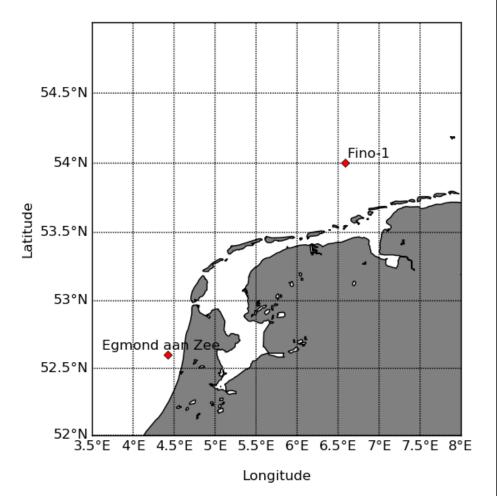
$$= m I I_{12} + h$$


$$z_{0 rough} = \frac{D \times H_S \times 2\pi \times (u_*)}{q \times L}$$

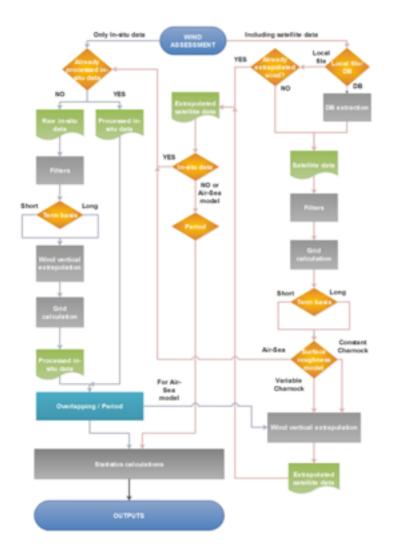
$$= m I I_{40} + h$$

Z₀ methodologies

Z₀ regimes



Locations



Insitu data composed by two meteorological masts in the North Sea, Fino-1 & Egmond aan Zee.

	Fino-1	Egmond	
Distance to shore	40 km	14.5 km	
Depth	30 m	16.5 m	
From	1/1/04	1/7/05	
То	30/11/11	31/12/08	
Highest anemometer	90 m	116 m	

Data computation

- Quikscat + ASCAT are compared with 50min averages from Egmond aan Zee and Fino-1.
- Rain free measurements.
- Only measurements under neutral conditions, T_{sea} ~ T_{air}.

	Fino-1	Egmond		
U10 interval (m/s)	0.6 - 17.2	1.4 -23		
Cp interval (m/s)	5.3 - 22.32	3.13 - 9.26		
Wave age interval	3.8 - 330	1.8 - 202		
Hs interval (m)	0.2 - 5.7	0.14 - 4		
Measurements	64	598		

Egmond aan Zee Wind speed (m/s) Wind speed (m/s) 35 35 N = 599N = 599R squared = 0.7715562 y = 0.846x + 2.004 R squared = 0.74731305 y = 1.026x + 1.051 30 30 Age + ECMWF Fetch_m ECMWF NRMSE = 0.97977673926 NRMSE = 2.89351712226 Bias = 0.446468601382 Bias = 1.3185295087 25 25 Satellites 50 Satelites 50 50 min + 10 10 10 15 20 25 30 10 15 20 25 30 35 35 egmond_wave.xlsx egmond_wave.xlsx Wind speed (m/s) Wind speed (m/s) 35 35 Log_law + Maat N = 599N = 599R squared = 0.76012419 R squared = 0.6684072 30 30 y = 1.111x + 1.708 NRM5E = 6.20801336231 Bias = 2.82889247333 y = 0.798x + 2.12 NRMSE = 0.150109447911 Bias = 0.068402476378 Sea ECMWF 25 25 state Satellites 12 20 elites 3 15 + 10 30 25 10 15 20 30 35 10 15 20 25 30 35 egmond_wave.xisx egmond_wave.xisx

Non-sea/wave dependant methods

		Fin	o-1	Egmond aan Zee		
u*	Zo	Iteration	Fetch	Iteration	Fetch	
NF	R ²	0,810	0,824	0,775	0,746	
lter/ECMWF	Slope	0,892	0,984	0,868	1,025	
r/E0	NMRSE	0,124	0,064	1,198	2,910	
ltei	Bias	0,171	0,088	0,546	1,326	
	R ²		0,822		0,752	
n	Slope		0,970		1,001	
ΝΝ	NMRSE		0,041		3,259	
	Bias		0,057		1,485	

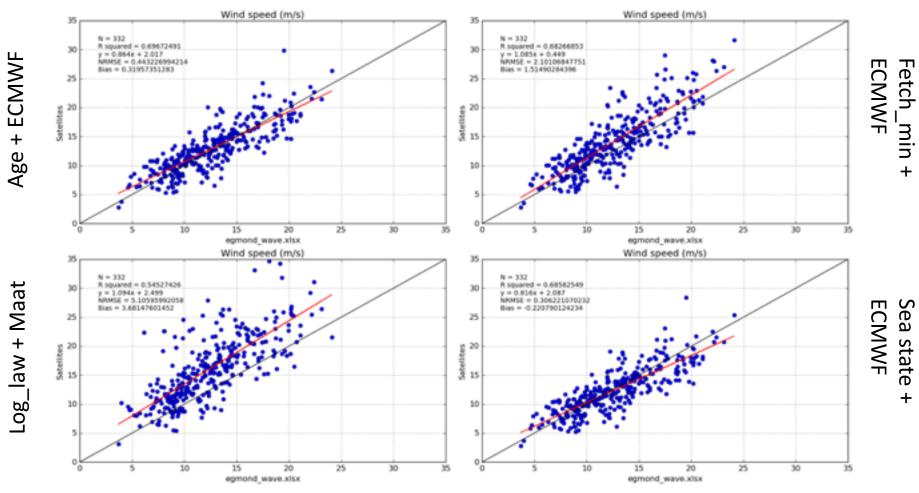
	Values	
R ²	>0.9	
Slope	>0.87	
Slope	<1.13	
Bias	<1	

Classification parameters

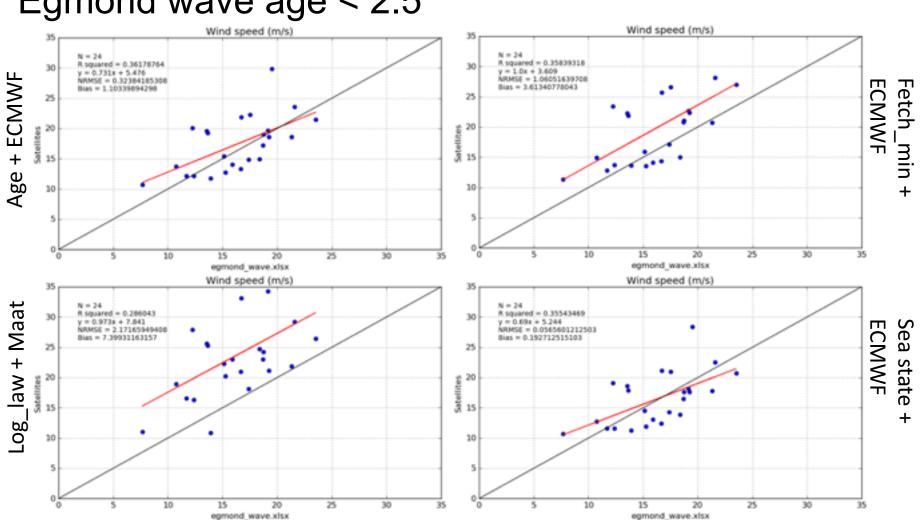
Results

Fino-1

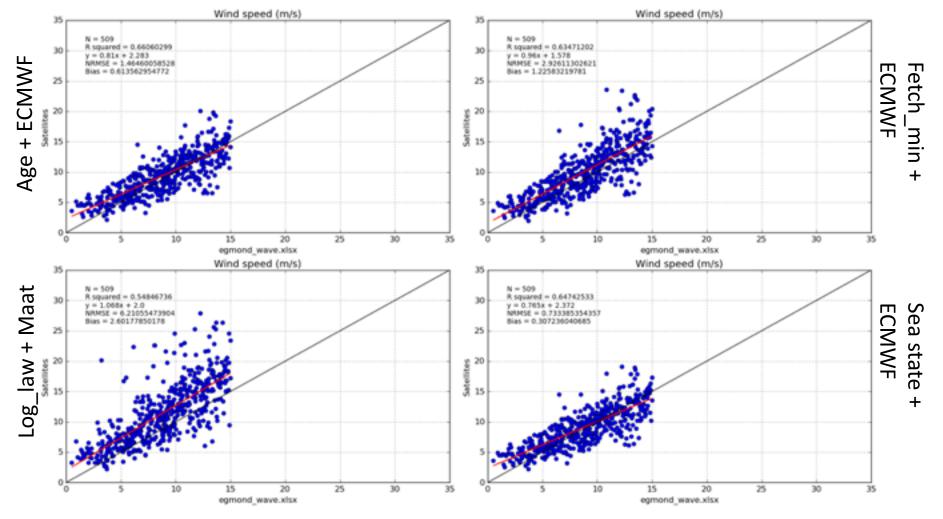
u*	Z 0	Fetch_min	Smith	Toba	Speed	Age	DTU_age	Log_law	Sea_state
	R ²	0,824	0,817	0,823	0,818	0,821	0,809	0,820	0,809
ECMWF	Slope	0,985	0,850	1,130	0,657	0,879	0,887	0,880	0,861
CM	NMRSE	0,064	0,182	1,026	1,426	0,111	0,132	0,232	0,091
	Bias	0,089	0,253	1,420	1,973	0,154	0,183	0,322	0,126
	R ²	0,822	0,818	0,818	0,815	0,815	0,802	0,818	0,801
л	Slope	0,970	0,838	1,114	0,647	0,867	0,875	0,877	0,848
Wu	NMRSE	0,041	0,081	1,171	1,337	0,006	0,239	0,212	0,021
	Bias	0,056	0,112	1,621	1,850	0,009	0,331	0,294	0,029
	R ²	0,634	0,629	0,626	0,594	0,626	0,633	0,827	0,624
lat	Slope	0,908	0,819	1,022	0,635	0,836	0,862	0,859	0,871
Maat	NMRSE	2,402	2,479	1,809	3,322	2,438	2,292	0,643	2,521
	Bias	3,324	3,430	2,504	4,597	3,374	3,171	0,891	3,488


Egmond aan Zee

u*	Z0	Fetch_min	Smith	Toba	Speed	Age	DTU_age	Log_law	Sea_state
	R ²	0,747	0,772	0,772	0,775	0,771	0,772	0,774	0,760
ECMWF	Slope	1,026	0,795	1,078	0,652	0,846	0,799	0,878	0,798
S	NMRSE	2,893	0,309	5,020	2,795	0,979	0,877	1,292	0,150
	Bias	1,318	0,138	2,287	1,273	0,446	0,399	0,589	0,068
	R ²	0,752	0,775	0,775	0,777	0,775	0,774	0,775	0,766
, n	Slope	1,002	0,776	1,052	0,635	0,826	0,780	0,873	0,793
٨u	NMRSE	3,247	0,611	5,444	2,506	1,303	1,185	1,360	0,535
	Bias	1,479	0,278	2,481	1,142	0,593	0,540	0,619	0,244
	R ²	0,420	0,409	0,400	0,385	0,410	0,412	0,668	0,409
lat	Slope	1,476	1,269	1,453	1,138	1,329	1,252	1,111	1,380
Maat	NMRSE	16,841	13,989	19,227	10,531	15,020	13,896	6,208	14,830
	Bias	7,633	6,379	8,779	4,824	6,852	6,336	2,828	6,766



Egmond wage age < 5



Egmond wave age < 2.5

Egmond $U_{10} < 15 \text{ m/s}$

Summary

- Maat method for friction it is only working for log_law method. Practically, there is no difference between Wu and ECMWF methods.
- Results for Non-sea-data methods are not so far from sea-data results.
- Fetch method presents the best slopes in the regressions lines. However it should be noted that both locations can be considered long fetch.
- After filtering data, most of measurements were taken under rough conditions. So, application of roughness regimes had very small impact, for that reason fetch and fetch_min methods have practically the same results.

Future plans:

- Keep checking methodologies at different locatios, mainly fetch method.
- Try the four selected methods under different wave ages, wind speeds and wave height.
- If we can get wind stress or friction velocity directly from satellites, we "just" need to calculate surface roughness.

University of **Strathclyde** Glasgow

The University of Strathclyde is a charitable body, registered in Scotland, with registration number SCo15263