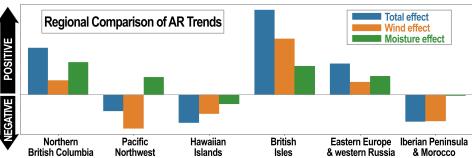

Northern Hemisphere Atmospheric River & Extreme Precipitation Trends Since 1950

Our analysis of atmospheric river (AR) trends aims to understand changes in weather extremes from a climate perspective.

Our systematic investigation into atmospheric reanalysis and station-based observations reveal robust, long-term trends of enhanced and poleward-shifted winter atmospheric river and extreme precipitation since 1950 in the northern hemisphere.


Both historical anthropogenic warming and internal climate variability have contributed to these trends.

What are atmospheric rivers? Long, narrow transient corridors of intense horizontal moisture transport in the atmosphere often leading to strong, landfalling heavy precipitation.

Physical mechanisms of AR trends are further investigated:

- Moisture increase due mainly to historical warming
 tends to enhance the AR activity overall;
- Poleward shift of westerly wind jets due partly to historical warming – acts to shift the AR active band poleward.

Outlook: Changes in AR & related extreme precipitation events need to be closely monitored with satellite observations and studied with climate models and theory.

New data: A recently developed, satellite-derived AR database has great potential to serve that purpose (<u>Liu and Hu, 2025</u>).

Funded by NASA's Physical Oceanography Program