Diurnal and semidiurnal cycles of the ITCZ

Thomas Kilpatrick Shang-Ping Xie Sarah Gille

Motivation

The interaction between convection and circulation is a bottleneck in atmospheric science.

Atmospheric convection has a strong diurnal cycle, due to solar heating over land, sea breeze circulations in coastal areas, and radiative effects (?) in open-ocean regions.

RapidSCAT is well-suited for study of diurnal winds due to its non-sun-synchronous orbit, opening a window on convection-circulation interaction.

The diurnal cycle of divergence is enhanced in regions of strong air-sea interaction

The RapidSCAT diurnal cycle of divergence picks out regions of strong air-sea interaction:

- ITCZ/SPCZ
- Coastal regions with strong sea breezes
- Western boundary current regions

T_b variance shows the strongest convection is in the ITCZ/SPCZ regions

The semidiurnal T_b harmonic is nearly as strong as the diurnal T_b harmonic

The semidiurnal T_b harmonic consistently shows coldest clouds tops from 2-5 local time

Only the pre-dawn T_b minimum is associated with deep convection

2D histogram of percent high cloud in Pacific ITCZ.

Cloud tops with T_b <208 have a pre-dawn peak.

At lower levels, peak is in afternoon (1400-1600).

See:

Albright et al. 1985
Mapes and Houze 1993
Nitta and Sekine 1994
Chen and Houze 1997
Bain et al. 2010

Summary of OLR harmonic analysis

The semidiurnal T_b variability strongly suggests a dynamical link to the S_2 atmospheric pressure oscillations (atmospheric tides),

e.g. Brier and Simpson 1969.

 $S_2 >> S_1$ for tropical SLP.

Summary of OLR harmonic analysis

The semidiurnal T_b variability strongly suggests a dynamical link to the S_2 atmospheric pressure oscillations (atmospheric tides),

e.g. Brier and Simpson 1969.

 $S_2 >> S_1$ for tropical SLP.

Hypothesis: large-scale moisture convergence by the semidiurnal winds is an important term in the area-averaged q budget.

$$g^{-1}\frac{\partial}{\partial t} \int_{p_T}^{p_s} q \, dp = -\nabla \cdot \left(g^{-1} \int_{p_T}^{p_s} \mathbf{u} q \, dp\right) + E - P.$$

RapidSCAT indicates ITCZ divergence is semidiurnal, consistent with OLR

Divergence and T_b are roughly in phase over the ITCZ.

Divergence looks more diurnal south of the ITCZ, consistent with Deser and Smith 1998.

Pacific ITCZ area-averaged divergence dominated by semidiurnal component

The NICAM model fails to reproduce the ITCZ's semidiurnal divergence signal

NICAM rainfall distribution is pretty good...

The NICAM model fails to reproduce the ITCZ's semidiurnal divergence signal

Summary

ITCZ wind divergence looks strongly semidiurnal, suggesting links to the strong semidiurnal signal in OLR.

The pre-dawn T_b minimum is much colder than the afternoon T_b minimum, possibly due to diurnal radiative effects (Randall et al. 1991).

Summary

ITCZ wind divergence looks strongly semidiurnal, suggesting links to the strong semidiurnal signal in OLR.

The pre-dawn T_b minimum is much colder than the afternoon T_b minimum, possibly due to diurnal radiative effects (Randall et al. 1991).

Why does the ITCZ select the semidiurnal frequency?

Lindzen 1978 and Hamilton 1981 suggest that the S₂ atmospheric tide is intimately linked to convection.

Atlantic ITCZ divergence also looks semidiurnal

Pacific ITCZ: u

- Easterly trade evident in total u (top).
 0.5 m/s contours in full u.
- Semidiurnal oscillation prominent in departure from time mean (bottom).
 0.2 m/s contours in anomaly.
- Note that northern and southern hemispheres appear out of phase. Is this consistent with tidal theory? Should plot for a wider latitude swath.

Pacific ITCZ: v

- Semidiurnal oscillation visible even in full field. This contributes a lot of the divergence.
- Again, 0.5 m/s contours on top and 0.2 m/s contours below.
- Northern and southern hemispheres appear more symmetric than for *u*.
- Ueyama and Deser found v to be more diurnal, so there is some disagreement here.

We examine TRMM 3B42 rainfall in the same boxes as winds...

DJF rainfall 2010-2014 (mm/d)

...and find that diurnal rainfall variability dominates in all 4 regions

The diurnal rainfall variability is in contrast to OLR, which has a strong semidiurnal component.

Water vapor also has substantial semidiurnal variability in the ITCZ

Motivation

Atmospheric convection has a strong diurnal cycle, due to solar heating over land, sea breeze circulations in coastal areas, and radiative effects (?) in open-ocean regions.

RapidSCAT is well-suited for study of diurnal winds due to its non-sun-synchronous orbit, opening a window on convection-circulation interaction.

• 2°N