Combining wind and rain in spaceborne scatterometer observations: modeling the splash effects in the sea surface backscattering coefficient

<u>F. Polverari</u>^(1,2,4), F. S. Marzano^(1,2), L. Pulvirenti^(3,1), N. Pierdicca⁽¹⁾, S. M. Hristova-Veleva⁽⁴⁾, F. J. Turk⁽⁴⁾

¹ DIET, Sapienza University of Rome, Rome, Italy
² CETEMPS, University of L'Aquila, L'Aquila, Italy
³ CIMA Research Foundation, Savona, Italy
⁴Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

E-mail: polverari@diet.uniroma1.it federica.polverari@jpl.nasa.gov

Outline

- ☐ Problem overview, objective and motivations
- **☐** Modeling the surface backscattering coefficient

Method

- Two scale model
- Ocean wind wave spectrum developed by Donelan and Pierson (1987) *Results*
- Validation at VV and HH polarizations using QuikSCAT GMF
- ☐ Modeling the splash effects on the surface backscattering coefficient

Method

• Extension of the Donelan and Pierson spectrum to include both wave damping and ring waves

<u>Results</u>

- RR extended wave spectrum
- Ku band sigma0

Introduction

Problem Overview:

Rain strongly affects the wind scatterometry leading to erroneously wind retrievals if the effects of rain are not compensated:

- Rain *modifies* the ocean surface by impinging on it
- Rain <u>attenuates</u> the scatterometer signal as it passes through the atmosphere
- Rain <u>increases</u> the scatterometer signal by adding the backscatter from rain volume

Objective:

Development of a **theoretical forward model** simulating scatterometer observations in presence of rain

Motivations:

- More accurate approach in estimating wind than empirical methods
- Opportunity to ingest an inversion algorithm to *jointly estimate* wind/rain
- Opportunity to *evaluate the uncertainty* of the rain rate estimates which, in turn, affect the uncertainty in the wind speed and direction retrievals

Modeling the surface backscattering

 \Box The scatterometer backscattering coefficient σ_{SRF} has been modeled by implementing the sea surface *two-scale model* in the SEAWIND software:

$$\sigma_{SRF} = \int_{-\infty}^{+\infty} dS'_{y} \int_{-\infty}^{\cot \theta} dS'_{x} \alpha_{p}^{s}(\theta, \varphi) (1 - S'_{x} \tan \theta) P(S_{x}, S_{y})$$

 $\alpha^s_p(\theta, \varphi)$: backscattered radiation from a single small-scale rough patch θ, φ : the zenithal and azimuthal observation angles

 σ_{SRF} is expressed by the sum of the radiation from small-scale (capillary) waves, which are superimposed to large-scale (gravity) waves, weighted by the large-scale slope.

The ocean directional wind wave spectrum $W(k, \varphi)$ model has been implemented based on the spectrum developed by *Donelan and Pierson (1987)*:

$$W(k,\varphi) = \frac{1}{2\pi k} S(k)\Phi(k,\varphi)$$
 where

$$S(k) = \begin{cases} k^{-3}B_l^{DP} & k < 10k_p \\ k^{-3}B_h^{DP} & k > 10k_p \end{cases}$$

$$\Phi(k, \varphi) = \sec h^2(h_1 \varphi) \Rightarrow \Phi(k, \varphi) = 1 + \Delta(k)\cos 2\varphi$$

Main features

- Clear separation between gravity and capillary waves ranges
- Suitable for modeling the rain effects in the capillary waves region

k: wavenumber φ : the wind direction S(k): omnidirectional spectrum $\Phi(k, \varphi)$: spreading function $\Delta(k)$ up/crosswind ratio

Validation using QSCAT GMF: VV pol

- Good agreement in VV pol
- The Up/Crosswind ratio $\Delta(k)$ has been tuned to improve the agreement

Validation using QSCAT GMF: HH pol

- Main discrepancies in HH pol
- Difference increases with the wind speed
- The Up/Crosswind ratio $\Delta(k)$ has been tuned to improve the agreement

Modeling the splash effects

Exstension of Donelan and Pierson spectrum model, in the region of the ocean surface capillary waves, B_h^{DP} , to include two main effects:

i) Rain induced wave damping

• Wave damping parameterization using an <u>attenuation factor</u> A(k,RR) defined by Nystuen (1990)

ii) Generation of ring waves

• Additive <u>log-Gaussian spectral model</u> S(k,RR) described by Bliven et al. (1997)

RR-Extended spectrum:

$$W(k,\varphi,RR) = \begin{cases} \frac{1}{2\pi k} [k^{-3}B_l^{DP}(k)]\Phi(k,\varphi) & k < 10k_p \\ \frac{1}{2\pi k} \{[k^{-3}B_h^{DP}(k)\Phi(k,\varphi)]e^{-A} + k^3S(k,RR)\} & k > 10k_p \end{cases}$$

RR-Extended wave spectrum results

- Full spectrum *enhancement* at $k > 10^2$ rad m⁻¹ for increasing rain rate, due to ring waves generation
- The ring wave effects are stronger than the rain-induced wave damping using:
 - i. Drop size distribution (DSD): Marshall and Palmer (1948)
 - ii. Drop diameter: 1.5 mm
- Additional test with different DSDs are planned

Ku-band sigmao results with rain

Conclusion and future steps

- In order to simulate the scatterometer observations, the two-scale model of the sea surface and the sea surface wave spectrum developed by Donelan and Pierson (1997) have been used
- The validation results show a good agreement between the no-rain model and the QSCAT GMF, especially at VV polarization
- The Up/Crosswind ratio needs to be tuned. A fine tuning with respect to friction velocity seems to be a valid approach [Pierdicca and Pulvirenti, 2008]
- The splash effects have been modeled by extending the wave spectrum in the range of capillary waves. Rain induced wave damping and generation of ring waves have been included
- Numerical results confirm that the proposed model is physically consistent. For different wind regimes, Ku band co-polar surface backscattering coefficients increases when the rain rate becomes higher due to the increasing roughness
- Future steps:
 - o Including the volume backscattering as well as attenuation due to rain
 - o Comparison to real data (RapidScat, SeaWind, AMSR, GPM)
 - o Development of an inversion algorithm to estimate both wind and rain, *simultaneously*