# SMOSops secondary payload assessment: optimal FPIR radiometer configuration for sea surface roughness characterization at L-band

## M. Portabella, J. Font, R. Sabia, A. Camps, N. Reul\*



SMOS Barcelona Expert Centre CSIC-UPC

\* DOS, Ifremer, Brest



- L-band 2D-interferometer (MIRAS) onboard ESA Soil Moisture and Ocean Salinity (SMOS) mission to be launched in September 2009.
- At L-band, Tb over the ocean is mainly modulated by three geophysical variables: SSS, SST, and roughness.
- Analysis of pre-launch semi-empirical geophysical model functions shows that sensitivities to surface roughness and SSS are of the same order.
- Unlike Aquarius, SMOS does not have a complementary instrument to provide information on roughness
- SMOS follow-on (SMOSops): suitable secondary payload to quantify/correct surface roughness impact on Tb to improve SSS retrievals?
- China (CSSAR) offers ESA an X-band Fully Polarimetric Interferometric Radiometer (FPIR)
- ESA asked SMOS-BEC to review FPIR configuration



# **MIRAS Specifications**

MIRAS: MIcrowave Radiometer with Aperture Synthesis

- Passive microwave radiometer (L-band - 1.4GHz)
- 2D interferometry
- multi-incidence angles (0°-60°)
- 755.5 km altitude
  - ~ 900 km swath (alias free)
- polarimetric observations
- spatial resolution:
- revisit time:
- mission duration:
- 30° steer angle
- 32.5° tilt angle

**30-50km** 1-3 days 3-5 years arm (3.36 m length)

element spacing: 0.875  $\lambda$ 

69 receivers in total (18 in each arm, 15 on the hub)

21 receiver elements per arm: 6 x 3 + 3 (hub)

6 redundant receivers (in hub)

**3** / 14



Satellite geometry & FPIR specifications



|                              | T                                               |                  |
|------------------------------|-------------------------------------------------|------------------|
| system                       | FPIR(single-channel)                            | WindSat          |
| Sensitivity                  | 0.46K(full-pol)                                 | 0.44             |
|                              | 0.38K(dual-pol)                                 |                  |
|                              | 0.27K(single-pol)                               |                  |
| polarization                 | full                                            | Full             |
| Radiometric accuracy         | 0.5K                                            | 0.75/0.25        |
| Spatial resolution           | $3.4^{\circ} \times (4^{\circ} \sim 5^{\circ})$ | 1.13°×1.13°      |
|                              | $106 \times (83 \sim 101) km^2$                 | ~30km            |
| Swath(alias free)            | 908km[70°@800Km]                                | 950km[68°@830Km] |
| /                            |                                                 |                  |
| Revisit time                 | 3 days                                          | N/A              |
| Power consumption            | ≤35 watts                                       | N/A              |
| Mass                         | ≤25kg                                           | N/A              |
| Array physical size          | $0.7 \times 0.4 \times 0.05 \text{m}^3$         | 1.8-m diameter   |
| Electrical size              | $25\lambda \times 14\lambda$                    | N/A              |
| Minimum spacing              | 0.635 <i>λ</i>                                  | N/A              |
| Amount of antennas           | 8                                               | 3 feed-horns     |
| Amount of receivers          | 8                                               | 6                |
| <b>Amount of Correlators</b> | 28(cross)+8(auto)                               | N/A              |
| ADC resolution               | 3-bits                                          | N/A              |
| Sample rate                  | 25MHz                                           | N/A              |
| Receiver mode                | SSB                                             | N/A              |
| Squint angle                 | 47 °                                            |                  |
| Incidence angle              | 50 °                                            | ~50 °            |
| Calibration                  | 2 points + FTT(optional)                        | 2 points         |
| Center frequency             | 10.69GHz                                        | 10.7GHz          |
| bandwidth                    | 10MHz                                           | 300MHz           |
| Integration time             | 7.58s(single-pol)                               | 3.93ms/pixel     |
|                              | 3.79s(dual-pol)                                 |                  |
|                              | 2.52s(full-pol)                                 |                  |



- Initial FPIR assessment study
  - Analyse whether X-band is the optimal frequency
  - Trade-off dual versus full polarisation
- Initial assumptions:
  - Wind is a good proxy for sea surface roughness
  - Only a fixed 50° incidence angle is considered
- Extended study
  - Incidence angle configuration
  - Dual-frequency consideration
  - Spatial resolution

# Sensitivities

### Wind Speed

SMOS BARCELONA EXPERT CENTRE

millen

SMOS

• The higher the frequency, the higher the sensitivity



X-band is about 20% more sensitive than C-band

Sensitivities

Water Vapour / CLC / Rain

SMOS BARCELONA EXPERT CENTRE

• The higher the frequency, the higher the sensitivity



Figure 3: H polarization sensitivity of WindSat channels to water vapour for low to moderate wind speeds (Quilfen et al., JGR 2007)

 X-band is around twice more sensitive to integrated water vapour than C-band.

## Sensitivities

#### Wind Direction

SMOS BARCELONA EXPERT CENTRE

- X-band + higher freqs
  - Tv & Th signal overwhelmed by atmospheric effects (Yueh et al, 2006)
  - U & V little affected by atmosphere
  - Not enough signal modulation below 7-8 m/s
  - Modulation increases with speed and saturates at 15 m/s (3 k peak-topeak, about 4 m/s, at Ka-band) (Meissner and Wentz, 2006)
  - Directional signal is about 60% smaller at X-band than at 37 GHz
- C-band
  - Directional signal is about 80% smaller at C-band than at 37 GHz
  - U & V never tested although lower signal than at X-band is expected
- Directional signal not noticeable at L-band

#### SST

- Small for X-band and higher freqs
- Noticeable for C-band: may help SSS retrievals since L-band sensitive to SST as well



Incidence angle

SMOS BARCELONA EXPERT CENTRE

- Sea surface roughness impact on MW emissivity
  - Around nadir, short waves (Bragg) are dominant
  - As incidence angle increases, longer wave contribution increases
  - Around 50°, both short and long waves impact emissivity
- Since MIRAS is multi-incidence (0° to 60%70%), shou Id FPIR multi-incidence be considered?
- Coverage has to be taken into account
- **Foam** 
  - Around 50°& V-pol (both for C and X-band), little s ensitivity to roughness, except for high winds where it exponentially increases due to presence of foam
  - However, foam induced emissivity not well understood

## Roughness is not only induced by (local) wind!



- Multi-parameter inversion (SSS, SST, roughness, CLC, WV) or two-step inversion (FPIR-derived roughness for SSS inversion)
  - Can FPIR provide sufficient wind accuracy for improving SSS retrievals? (not according to WindSat experience)
  - SSS inversion more challenging since additional parameters (atmospheric) need to be derived
  - Does the wind well characterize the roughness? (e.g., foam, swell effects)

### Roughness-induced T<sub>B</sub> corrections

SMOS BARCELONA EXPERT CENTRE

UPC

- Windsat channel combination mitigates atmospheric effects while preserving most of the wind sensitivity (Meissner & Wentz, TGRS 2008)
- Likewise, a MIRAS & FPIR channel combination could remove/reduce roughness effects while preserving SSS sensitivity
- FPIR needs to be multi-incidence & complementary to MIRAS. This is challenging!
- Moreover, MIRAS & FPIR channel combination should also mitigate atmospheric effects on C/X-band
- Assumption: C/X-band scales well correlate with L-band scales. At low winds, C-band seems more appropriate than X-band





Figure 5. Top of the atmosphere brightness temperature [Kelvin] calculated in Meissner and Wentz (2008) as function of wind speed for various channel combinations: 10h (dashed-dot-dot), 1.5 \* 10v – 10h (dashed), 6h - 1/3\*10h (solid), where 6h, 10h, and 10v correspond to C-band/H-pol, X-band/H-pol, and X-band/V-pol channels, respectively. For computing the curves we have used an effective temperature of 10°C and a surface rain rate of 5 mm/h [Figure 9 from **Meissner and Wentz, 2008**].



- For a single-frequency radiometer:
  - 18 GHZ or higher too sensitive to atmosphere
  - C or X-band?

SMOS BARCELONA EXPERT CENTRE

W.D.am

- C-band is closer to L-band, i.e. better resolves L-band roughnessinduced Tb
- C-band is much less sensitive to atmosphere
- X-band is more sensitive to wind
- At X-band, V-pol/H-pol combination reduces atmospheric effects while preserving wind sensitivity up to 10 m/s (Meissner and Wentz, TGRS, 2002); conservative QC
- No single freq system able to disentangle roughness & atmosphere
- Full-pol system needed for solving azimuthal signature?
  - C and X-band relatively low sensitive to wind direction
  - NWP wind direction can do the job, except in seldom cases
  - To beat NWP wind direction accuracy, several full-pol bands needed
  - Dual-freq/dual-pol system preferred over single-freq/full-pol system



- Ideal solution should be fully polarimetric C or X band + higher freq radiometer. Three flavours:
  - C + X : optimal compromise (dry wet) winds; conservative QC
  - C + other higher freq : better "dry" winds; worse "wet" winds; effective QC
  - X + higher freq : similar to previous case but with larger azimuthal signal

#### Spatial resolution

- X-band FPIR is about 100 km
- C-band FPIR would be about 150 km
- Although MIRAS is 30-50 km, SMOS accuracy requirement is 0.1 psu for monthly 2°x 2°gridded SSS product



### Future work

- End-to-end simulation of FPIR impact on SMOS SSS retrievals
  - Single frequency good enough?
  - X or higher freq?
  - Dual frequency optimal combination? C+X? C+higher freq? X+higher freq?
  - Incidence angle configuration
- SMOS to be launched in Sep. 2009: collocation experiments SMOS & Windsat / AMSR-E

#### Alternative systems:

- L-band scatterometer
- GNSS-R system
- Since SMOSops has been postponed (not before 2015), time is not an issue. Any suggestions?