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/ ABSTRACT \

This poster investigates the problem of estimating sea surface rainrate
using only Ku-band satellite scatterometer data by employing artificial
neural network methods. All data is coming from the ADEOS-II satellite
mission which generates collocated scatterometer and radiometer
data needed to train and test the neural network algorithms. The main
goal of this work is to produce useful algorithms to estimate rainrate
from future satellite missions using scatterometer data alone.

Recent studies [2, 3] used neural network methods to derive wind speeds
from scatterometer data. Their goal was to produce more accurate
estimates of wind speed In the presence of rain and/or in extreme wind
conditions. They used hierarchical NNs trained with satellite generated
backscatter measurements in each wind cell, wind speed and direction, and
cross-track distance. In the low-wind speed range the NN gives two to
three times better estimates than existing methods in both rain and no-rain
conditions, while in high-wind speed range the NN performs slightly worse
In no-rain situations. The new method in [3] aims at improving the wind
estimates in high-wind conditions such as those encountered in tropical
cyclones.

Neural networks have been used before to estimate surface rainrates. For
example, Ghosh et al. [1] trained NN models with OSCAT-2 data (NRCS
and brightness temperature) with external sources of rain data for
calibration coming from TRMM and AMSR-E satellites. Their purpose
was to estimate rain effects (rain flag or rain rate) or to account for rain
effects In wind estimates. Their method was applied to global rainfall
estimates on regional and seasonal scales.

In this presentation we show results obtained with NNs trained with data
from the ADEOS-II NRCS (SeaWinds) and rainrate (AMSR) data. The
Inputs In the NN are the mean and variance of the four NRCS
measurements in each wind cell (H- and V-pol, and their azimuth
parameters), their relative position in the 1800 km satellite swath, SRAD,
and wind speed. The input measurements are readily extracted from the
L2A and L2B standard products, for approximately 6 months. The AMSR
rainrate product here is collocated and coincident with NRCS and wind
data and is ideal for training the NN.

OBJECTIVE

The main goal of this work is to investigate whether rain estimates
from satellite data can be improved. Current rain estimates, such as
SRAD result in approximately 76% of data points with relative errors
bigger than 20% from the independently measured AMSR rate and
with 10% of the data with errors greater than 100%. ADEOS-II data
provides a unique collocation of scatterometer data with AMSR
measure rain rate. We propose to use NN to estimate rain rate with
AMSR values used for training purposes. Once the NN is trained, its
parameters can be used for independent rain estimation from just
satellite data.
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/ METHODS \

In our current approach we divide the estimation problem into a 2-
step classification and estimation problems using a hierarchy of two

feed-forward NNs. Figure 1 shows the diagram of the model:
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Figure 1: Rain rate estimation model

The first NN (NN_C) receives combined satellite generated input such
as sigma0, SRAD, wind speed and CTD. The NN_C output produces a
rain flag, which is 1 if the input corresponds to rain or O if no rain. The
second NN (NN_E) takes the input from NN_C only in case it is deemed
rain by the NN_C. The output of the NN_E is an estimate of the rain rate
in mm /hour.

A simpler model would use only one NN estimating the rain rate for
both rain and no rain points. The main reason for choosing a two
network architecture is that satellite data is dominated by no rain
(over 80%). We also hypothesized that the estimation of rain rate for
rain points only might increase the precision of the estimates.

ADEOQS Il DATA

The ADEOS II NRCS and rain rate (AMSR) values were extracted
between February 2003 and October 2003. The data comes from the
following data collections: SeaWinds L2A (sigma0), SeaWinds L2B (wind
speed), and AMSR L2B. We only kept the measurements from a region
around the equator. All variables were averaged in 25 km square cells.
The remaining data consists of approximately 13 million points of:
collocated average sigmaO both H- and V- pol and their azimuth
parameters, average wind speed, CTD, SRAD and AMSR rain rate
values. Figure 2 contains plots of sigma0: inner and outer aft, wind
speed, and SRAD as a function of AMSR rain rate:
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Figure 2: AMSR rain rate as a function of: (a) SRAD, (b) Wind speed,
(c) sigma0 inner aft and (d) sigma 0 outer aft

The data was preprocessed as follows: SRAD was divided by 10 to
approximate better the AMSR values, sigma0 was brought to the
positive range by adding a constant, and the absolute value of CTD was
taken. All data was then normalized in the [0, 1] interval before being
used in the NN training.

/ Results \

Classification: To train the classification network (NN_C), the data was
separated into two sets, the rain points with an AMSR rain rate greater
than 1 mm/h and the no rain points that have lower rain rates. The
training data consisted of all rain points and an equal number of
randomly chosen no rain points. The target of the NN_C is a two value
vector with one value indicating rain and the other no rain. From all
data points, 15% were randomly chosen for testing purposes only.
Multiple NNs were trained with one or two hidden layers and the
misclassification rate on the testing data was measured. We trained
several NNs using all 7 inputs (four sigma0O, SRAD, wind speed, CTD),
or just the four sigma0 and the SRAD.

The best error rate was obtained using all inputs with a NN with two
hidden layers with 10 and 7 neurons in each respectively. The overall
misclassification error was 6.70% composed of 4.22% error from rain
points classified as no rain and 2.48% error from no rain points
classified as no rain points. The mean AMSR rate for the misclassified
rain points was 1.61 mm/h and the mean AMSR rate for the
misclassified no rain points was 1.52 mm/h. The mean wind speed for
both rain and no rain misclassified points was around 9.5 m/s. The
mean wind speed for all data points in the set is 6.57 m/s. It can be
observed that the network is able to classify rain and no rain points
fairly well with errors in the low rain rate and high wind speed. Figure
3 shows the AMSR rate versus wind speed for all testing points. The
red points are the misclassified points in between the correctly
classified rain and no rain points.
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Figure 3: Classification results: red points — misclassified, blue points -
rain, green points — no rain

Estimation: The NN_E network was trained with all rain points from
the original data set (AMSR > 1 mm/h). We trained several NN with
different number of hidden layers and number of hidden neurons. The
best result was obtained using all rain points was with a two hidden
layer NN with 20 and 10 hidden neurons. The mean square error
(MSE) for the testing data was 2.64 with 1.46% of the testing points
having an absolute error compared to the target AMSR value larger
than 5.

To compare the SRAD with the new estimate produced by our model
we looked at the relative absolute error for all testing points:

RelErrorNN = abs(AMSR -y yy )/ AMSR
RelErrorSRAD = abs(AMSR - SRAD )/ AMSR

The mean value of RelErrorNN is 0.37 or 37% off the AMSR target
while that of RelErrorSRAD is 0.56 or 56% off the same values. There
are 62.85% of testing points with RelErrorNN > 0.2 while there are
77% of testing points with RelErrorSRAD > 0.2 or 20% off the target

values. We can conclude that the NN output estimates slightly better
the AMSR rain rates than SRAD.
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Figure 4 shows a comparison of the NN_E output (y yy ) and AMSR
values versus wind speed on the testing points.
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Figure 4: AMSR versus wind speed (top) and y yy ; versus wind speed
(bottom)

The mean wind speed for testing points with absolute errors greater
than 5 was 16.95. This is higher than the mean wind speed for all rain
points (12.63). We attempted to improve the precision of the NN_E by
restricting its training to data with limited wind speeds. We trained
several NNs with two hidden layers same dimensions 20 and 10. The
results are summarized in Table 1:

Wind Max Limit MSE % Abs(Error)>5
(m/s)
20 2.40 1.21%
12 0.87 0.2%

Table 1: Results NN_E trained with limited wind speed data

[t can be seen that NN_E trained with limited wind speeds reduces the
the mean square error on testing data.

CONCLUSIONS

This work aims to improve the rain estimate from scatterometer
generated data. The data is coming from the ADEOS II satellite for a
period of 6 months. Collocated backscatter, wind speed, cross-track
distance, SRAD, and AMSR measured rain rate were used with a 2-step
NN method: classification of rain versus no rain and estimation of rain
rate. This method was used before in [1]. The results are in line with
those reported in [1]. The estimation results are affected strongly by

high-winds. Compared to the SRAD estimate of rain rate, the NN
methods gives better results.
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