

A 17-Year Climate Record of Diurnal Winds Derived from the TRMM Microwave Imager

Frank Wentz and Lucrezia Ricciardulli Remote Sensing Systems

1997-2015 R.I.P.

Satellite MW Radiometers as a Wind Speed Calibration Reference for Scatterometers

TMI: 1 Hour Co-location with All other Satellites

min

TMI Samples the 24-hour Diurnal Cycle every 40 Days Data are available, come get it!

Buoys are our Absolute Calibration Reference

258,642 Collocations over 14 years Bias is -0.03 m/s Standard deviation is 0.77 m/s

Climate Change from 1997 to 2015 SST, Wind, Vapor, Cloud, and Rain

Intensification of Winds Gone for this Time period

Wentz, F.J., Journal of Climate, 2015, accepted pending minor revision.

Summary and Conclusions

- > RSS OVW Climate Records are tied to satellite MW radiometers wind speeds
- TMI is a very dependable and useful backbone the for satellite MW radiometers
- > TMI winds are unbiased relative to buoys up to 15 m/s.
- > Stability appears to be better than 0.1 m/s over 17 Years
- > TMI samples the complete 24-hour diurnal cycle every 40 days
- Diurnal information on SST, Wind, Vapor, Cloud, and Rain
- > TMI Directly Observes our changing climate from 1997 to 2015 at a very high precession